Information Processing
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Is the doll turning clock-wise or
counter-clock-wise?
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Left Brain ... vs Right Brain ...

LEFT BRAIN FUNCTIONS « RIGHT BRAIN FUNCTIONS
(counter-clock-wise) (clock-wise)

Logical, Visual,

Deductive, Imaginative,

Mathematical. Artistic.
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What Is Real?

« Optical illusions work because the visual system
reconstructs stimuli not according to how they actually
are, but by making certain assumptions about their
properties in order to “fill in the gaps”.

« The silhouette is 2D, but because almost all the
objects we encounter are 3D, the visual system
reconstructs it as such. And the silhouette is not
actually spinning — that is one of the assumptions
made by the visual system.

JMoon 10.2012



What Is Real?

"Phantom limb" — a person
who lost an arm still feels it
attached to his body.

“Alien limb syndrome”- a
person with cortical
trauma may feel he does

feel the arm attached to
him is someone else’s.

not have an arm and may

KAIST
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78% CAGR 2011-2016
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Demand for
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The world's information is more than doubling
every two years-with a colossal 1.8 zettabytes
created and replicated in 2011, which is
growing faster than Moore's Law.

Information Creation and Available Storage
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How Does the Nature Handles the Communication Issue?
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Facts About the

. Source of our thoughts, emotions and memories
. Monitors and controls body activities

. Fattest organ (60% fat)

. Can't tickle yourself

. 3 LBs

. 75% water

. No pain receptor

. 100 billion neurons

. ~7000 synapses/neuron

. New memory = new neuron connection

. Every thought = a unique pattern of activity in brain

. The human neocortex is a sheet of neural tissue approximately 1,000
cm2 in area and 2mm thick; Viewed under a microscope, the physical
characteristics of the different regions look remarkably similar.

Functional areas
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Premotor
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Left cerebral
hemisphere
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Primary visual
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auditory

cortex Pons Optic

radiation

Medulla
oblongata

Cerebellum

Spinal cord
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Inside the Brain...
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Brain Basics

Primary Association Primary
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Multiple Pathways

One neuron can join up to multiple other neurons, meaning
that there are thousands of different pathways connecting
different areas of the brain and multiple messages can be sent
down different pathways at the same time.

Source: Fast ForWord
15 IJMoon 10.2012



KAIST

Neuron Communication

« Neuron communication is crucial (to
memory, reaction, thinking, etc.)

 Neuron communication consists of
electrical impulse transmission (down the
axon) and chemical transmission (in the
synaptic gap).

« Disconnection between neurons means
loss of memory and ability to learn.
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High Performance Computing Platform

Interactive HPC for visually guided
and Interactive brain simulations
and in sifico experimentation

Multiscale capable HPC
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HPCP2

Exascale proof of concept
for human brain simulations

HPCP1

Human brain exascale HPC
with multi-scale & interactive capabilities

Simulation

1r"l" |
———

HPCP4 §

= RIKENS| K computer

T
Y1 Y2 Y3

Figure 23: A roadmap for the High Parformanc

T
Y5 Yé Y7 Y8 Yo

mance Computing Platform (HPCP) - major landmarks

S8 A3 FET Human Brain Project



KAIST

Memory in Brain

Memories are maintained in
patterns of synaptic connectivity.

Basic postulate of Neuroscience:
memories are stored through
modifications of synaptic
strengths within neural circuits:

The more one practices or thinks
about a piece of information
stored in her brain, the more that
particular synapse is used and its
strength grows.

JMoon 10.2012
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A Convincing New Theory of How Brain

Works: Memory-Prediction Framework
(by Jeff Hawkins)

The brain gets information about a very small part of the world.

The brain develops a model of the world based on this sparse
information.

The brain makes predictions based on this model (of what is expected &
what needs be done).

It carries out these steps exceedingly well using a hierarchical structure.
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World Cortex
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World o € ottes 1 Discovers causes 1n the world

2 Infers causes of novel input
3 Predicts future

4 Influences motor behavior
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Information Processing in the Brain:
Observations & Theories (due mainly to seff Hawkins)

Brain processes patterns (sound, touch, sights
are all inputted to cortex as spatial-temporal
sequences of patterns).

The brain is complex but its structure is
regular.

The brain is not a fast processor, but a
memory system that stores and plays back
experiences to help us predict, intelligently,
what will happen next.

The brain is a hierarchical representation
system (Hierarchical Temporal Memory)

— Matched to the inherent hierarchical structure of
the world (songs, words, houses, etc.)

nnnnn 10.2012



Hierarchical Temporal Machine

« At the lower level small details and fast-varying things are recognized.
« At levels higher up, recognized patterns do not move fast in time; presentations are more stable.

— Arunning dog, a jumping dog and a carton dog are all effortlessly recognized as a dog even to by a child brain.
Each node

- Learns common spatial patterns
- Learns common sequences
1 I e - Forms stable representations of sequences

L J |
7V 7% /X /\‘ Stable representations passed up

Sequence predictions passed down

/'UU}IX IX‘[H? A

\\\\\\\\\ \\\\\\\ R Creates hierarchical model of causes

Train on time based

. Bayesian methods resolve ambiguity
input patterns

Generalizes due to sharing in hierarchy

HTM is similar to (but unique from):
- HHMMs, HMAX, Visnet, Deep Belief Nets

Source: UBC DLS Jeff Hawkins




Brain Memorizes Sequences

Each HTM region looks for common patterns in its input and
then learns sequences of those patterns.

From its memory of sequences, each region makes predictions
based on 3 steps:

1) Form a sparse distributed representation of the input
2) Form a representation of the input in the context of previous inputs

3) Form a prediction based on the current input in the context of
previous inputs

*input bits here are different from the
“digital bits” we are familiar with; the bits
here represent attributes

Source: Numenta



Sequence Memory, the brain’s way
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only a small
percentage of neurons
are active at one time

How does this structure learn sequences?
What makes it high-order?
What makes it online?

Source: Jeff Hawkins -

Modeling Data Streams Using
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Context information is stored with multiple cells per column
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Modeling Data Streams Using

Sparse Distributed

Source: Jeff Hawkins -
Representations
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How the Context Information (Sequence) Is
Stored

« Say every column has 4 cells and there are 100 columns.

* The column is considered “on” if any cell in it is on.

« An input pattern is mapped to an on-off pattern of the columns.

« If only one cell per column is active at a time, we have 47100 ways
of representing the exact same input pattern at a given time.

« Each such way represenst a different context (past history) in which
the input pattern occurs.

« For a given pattern with a given context, a likely next pattern can be
predicted (each cell remembers the sequence of neighboring
patterns that has led to the activation of itself).

Source: Numenta



How Is the Context Information Made?

« Each cell remembers the sequence of neighboring patterns that has

led to the activation of itself.
« For a given pattern with a given context,

a likely next pattern can be

predicted.

Source: Numenta
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Hourly energy consumption predicted four hours in advance

Two different epochs
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orest Fire Detection by HTM

Spikes Splashdown Tornado TouchCells

=288 m

TouchFighter Twitter URLCache vNets

Source: Numenta
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Belief-Propagation or Message-
Passing Decoding of LDPC codes

A large number of simple identical processors collectively
performing a highly complex task

IR

codeﬁ bits
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Sparse H Matrix
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Mathematical Formulation of
Message-Passing

e Bit-to-Check:

SN:f(rl,rz,...,rN—l)

e Check-to-bit:

rn=g(s2,Ss,...,Sn)

KAIST
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After 1 Iteration

1 iteration
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After 5 Iteration

5 iteration
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After 10 Iteration

10 iteration
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After 15 Iteration

15 iteration
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Self-Iterating Equalization

input

Single

Complex
Equalizer

Conventional Equalizer

output

input=—

->» Equalizer 1 j
t 1soft information

B £d Equalizer 2 —>>| combiner

t ‘soft information A

=>| Equalizer 3

Distributed Equalizer

> output

37

Distributed, self-iterating equalization leading to acceptable overall hardware complexity.
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Performance: h3 & time-invariant filters
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Fig. 9: BiDFE based BER Curves on the Channel hg after 20 outer iterations.
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